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ABSTRACT 

This paper compares machine learning classification 

algorithms including logistic regression (LR), minimum 

distance to mean (MDM) and regularized linear 

discriminant (RegLDA) analysis in combination with 

preprocessing methods including xDAWN, Event 

Related Potentials (ERP) covariances and tangent space  

(TS),  for  P300  BCI  speller  in  efforts to improve 

usability and make real-world applications more viable. 

An experiment of a checkerboard paradigm with a 8 x 9 

matrix layout containing 44 Thai alphabets, 16 vowels 

and 7 numbers was conducted. Results show that 

RegLDA with xDAWN outperformed other models on 

P300 speller performance. This outcome helps lay the 

groundwork in improving the ease of use for future study 

on online application of P300 speller. During the 

experiment, the results also reveal subject-specific 

covariates of BCI performance, including concentration 

and sleepiness. The source code of this paper can be 

obtained from this link. 
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1. INTRODUCTION 

In the domain of Human-Computer Interface (HCI), 

the science and technology of Brain-Computer Interface 

(BCI) stands apart from most of the other HCI tools. BCI 

is different in that it does not require the movement or 

interaction of body parts (fingers, limbs, face, muscles, 

eyes, etc.), rather, it depends on brain activity. BCI is 

considered by many to be the next frontier of the 

evolution of man and machine as it promises new and 

unprecedented levels of control and interaction with 

computers in areas of learning, productivity, and 

entertainment. Most of the work to date has been focused 

on assistive technology in aiding disabled people who are 

completely paralyzed or in a locked-in state (e.g. ALS, 

stroke, etc.) to interface and communicate with the 

outside world. In the last 30 years, there has been slow 

and steady progress in the research and development of 

BCI assistive technology. Recently, conditions are ripe 

for major breakthroughs due to advancements in artificial 

intelligence, machine  
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learning, processing power, and hardware technology. At 

the core of this foundation lies the P300-BCI visual 

speller. 

The primary purpose of this work is to develop the 

Thai language-based P300-BCI visual speller as an 

assistive technology option for disabled native Thai 

speakers. Earlier P300 work in Thailand focused on a 

picture-based interface [1] rather than Thai characters due 

to the size and complexity of the Thai alphabet. The 

picture-based P300 system may not be ideal for complex 

writing tasks and communications. In this study, we 

compare different machine learning classification and 

preprocessing algorithms as well as subject-specific 

features including concentration and sleepiness on P300-

BCI visual speller performance in efforts to improve 

usability and make real-world applications more viable. 

 

2. BASIC CONCEPT 

2.1 EEG and P300 

Electroencephalography EEG was first discovered by 

Hans Berger in 1924 [2]. The P300-BCI  visual speller 

concept was first introduced by Farwell and Donchin in 

1988 [3]. The visual speller uses EEG signals to capture 

the electrical activity of the brain. The first event-related 

potential (ERP) was recorded by Pauline and Davis in 

1935 and published the research four years later [4]. In 

1964, Walter and his colleagues first reported on the 

cognitive ERP component, referred to as the contingent 

negative variation [5]. However, it is the discovery of the 

P3 (or P300) component in 1965 [6], which the P300-BCI 

visual speller approach is based on. The P300 is an event-

related potential (ERP) component detected in an EEG 

signal approximately 300 ms after the subject is presented 

stimuli [7]. The P300-BCI visual speller system can 

identify which stimulus is task-relevant (known as the 

oddball event) [8]. This can be accom- plished by 

determining the point of the (rare) occur- rence of target 

stimuli, thus differentiating it from fre- quent stimuli. The 

P300 response is greater when the occurrence of the event 

is random. As early as 1971 [9], researchers began to lay 

the groundwork for BCI. However, it was not until 1973 

when Vidal published his work titled “Toward Direct 

Brain-Computer Com- munications” [10] proposed the 

modern concept of BCI, where he suggested a man and 

computer interface could be used for the purpose of 

controlling external apparatus such as prosthetic devices 

or even in spaceships. Further  
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work throughout the early 1980’s [11] [12] [13] help lay 

the foundation for Farwell and Donchin in their research 

of the P300 component of the event-related brain 

potential (ERP) that led to the development of the BCI 

Visual Speller using the P300 control signal [4]. 

 

2.2 Matrix Paradigm 

The first speller that was developed by Farwell and 

Donchin in 1988 [4] presented the subject with a 6x6 

matrix containing alpha-numeric characters utilizing the 

English alphabet. The matrix contained 6 rows and 6 

columns that randomly flashed with a predetermined 

duration and interval. The subjects were asked to focus 

on a specific target character and count each time that it 

flashed. It was expected that the flashes of the target 

character would evoke a P300 potential as the subject 

focused on it. The P300-BCI Speller system would learn 

to predict the character the subject focused on based on 

identifying these evoked responses via the P300 ERP 

signal. 

P300-BCI spellers that utilize a row and column 

matrix paradigm (RCP) present inherent challenges and 

limitations in its design and performance. The size, 

layout, color, contrast, background, and brightness of the 

matrix, and the characters affect performance and 

usability.  A  matrix  design  may  affect a subject's 

perceptual performance and accuracy. For example, 

when characters are crammed together tightly, subjects 

have difficulty in accurately targeting them because of 

poor spatial distribution [14] [15] [15], this is known as 

the crowding effect [16]. Besides, when characters 

surrounding the target character flashes, this may cause 

false triggers known as adjacency errors [17]. Subjects 

may also experience fatigue during longer trials due to 

larger matrix size and higher repetitions. Subjects may 

experience repetition blindness due to attentional blinks, 

or identical targets are triggered within the series of fast 

row/column flashes, causing the second target to be 

missed [18] [19] . To avoid the adjacency-distraction and 

double-flash errors to which the RCP is prone to, an 

alternative, the checkerboard paradigm, (CBP) was 

introduced by [20]. Another paradigm called region-

based paradigm was also proposed by [21] where a two-

level speller flashes in regions instead of rows and 

columns. However, in this work we focus on comparing 

the machine learning and preprocessing techniques, thus 

we implemented the P300 with CBP for simplicity. 

 

3. Preprocessing 

Though the raw EEGs contain the desired P300 

evoked potentials, it also contains the ongoing activities 

(e.g. brain activities, muscular, ocular, pulse artifacts). 

Subsequently, this low  signal  to  noise ratio (SNR) 

makes the classification task difficult. Several methods 

such as xDAWN [22], ERP covariances [23] and 

Tangent Space [24] have been explored. xDAWN is a 

simple and unsupervised estimation which projects the 

raw recorded EEGs on the estimated evoked subspace 

and as a result, the ERPs are enhanced [22]. xDAWN 

provides a classification accuracy of 80% which is higher 

than that of ICA which could achieve 71% on only five 

symbol repetitions [22]. On the other hand ERP 

covariances [23] work on the covariance matrix 

estimation which time structure of the signals is normally 

neglected. It instead builds covariance matrices in which 

the spatial and temporal structural information are both 

taken into account allowing the purposeful application of 

Riemannian geometry for ERP  data.  Lastly,  as  for the 

tangent space algorithm, the vectorized covariance 

matrices are considered as Euclidean objects and then 

mapped onto the Riemannian tangent space. To decrease 

dimensionality, a variable selection procedure is applied 

and lastly a classification by LDA is performed [24]. As 

a result, an increase of the mean classification accuracy 

from 65.1% to 70.2% of motor imagery based 

classification was observed [24]. 

 

3.1 Classification Models 

Determining the presence or absence of a P300 

evoked potential from EEG features can be considered a 

binary classification problem. [25] employed logistic 

regression (LR) which is suitable for a binary 

classification task in order to explore important fea- tures 

for P300 detection improvement. [26] employed LDA 

which is based on a probabilistic regression net- work. 

[27] also reported that LDA, a linear classifier, serves as 

a good baseline performer. The minimum distance to 

mean (MDM) is a classification algorithm which is 

based on the comparison of distances, es- pecially with 

Riemannian distance which has shown great 

performance [28]. This is done by training a classifier 

consisting in the estimation of a mean co- variance 

matrix for each class and its Riemannian geometric mean 

which represents the expected dis- tribution. Therefore, 

an unknown class y is simply achieved by looking at the 

minimum distance to each class’s Riemannian geometric 

mean. 

 

4. METHODOLOGY 

4.1 Subject 

A healthy male adult of age 26 with normal vision 

participated in this study. The subject was instructed to 

have at least 7 hours of sleep before the experiment and 

to not consume caffeine on the day of the experiment. 

The participant had experience with EEG recording and 

P300 speller. 

 

4.2 Data Acquisition and Apparatus 

For EEG acquisition, EEG was recorded using a 

Electro-Cap International Inc.  cap  embedded  with 16 

electrodes with the sampling rate of 125 Hz distributed 

over the entire scalp. Only 8 channels of electrodes (Fz, 

F3, C4, Cz, Pz, P3, O2 and O1) were observed and 

referenced to the Cz position (See Fig. 1). All signal 

channels are connected and obtained from a Cyton board 

designed by OpenBCI. The pin wiring system was modi- 
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fied to connect using the connector. The cap is wired to 8 

male pins connector, and the Cyton Board is wired to the 

8 female pins connector. Bluetooth was used with the 

board receiver. For software, OpenBCI GUI + Hub was 

used to ensure that all electrodes are working correctly 

after the participant put on the cap. Salt-based electro-gel 

was used as a conductive medium and a LCD monitor 

(screen size:  24 inch, resolution:  1920 x 1080, refresh 

rate: 60 Hz) was used during the experiment. 

 

Figure 1. Electrode Positions 

 

4.3 Task, procedure and design 

We have adapted the P300 speller layout from [20] 

called the checkerboard paradigm, where 44 Thai al- 

phabets, 16 vowels, 4 tone marks and 7 numbers are 

placed  in  a  8  x  9  matrix  (See  Fig.  2).  The  matrix 

is virtually superimposed on a checkerboard pattern, 

which the subjects never see. Before each sequence of 

flashes, the items in white cells randomly fill a virtual 6 

x 6 white matrix and the items in the black cells randomly 

fill a virtual 6 x 6 black matrix (See Fig.  3).  During one 

sequence, the 6 virtual rows in the white matrix flash in 

order from top to bottom followed by the 6 rows in the 

black matrix (See Fig. 4). Then the six virtual columns in 

the white matrix flashes in order from left to right 

followed by the six columns in the black matrix, vice 

versa. 

This virtual checkerboard layout tackles 2 common 

errors in P300 spellers, the adjacency error and the 

double-flash error. The adjacency errors arise when one 

of the four items adjacent to the target flashes at the same 

time with the target and distract the participant’s 

attention, thereby producing P300 responses that cause 

the item to be selected unintentionally. On the other 

hand, double-flash errors occur when the target item 

flashes twice in immediate succession, causing reduction 

of P300 amplitude or changing morphology. These two 

types of errors are eliminated by the checkerboard 

paradigm. With the checkerboard layout, adjacent items 

(white and black) cannot be in the same flash group and 

the flash sequence of the white and black matrix 

constraints that there are at minimum of 6 and maximum 

of 18 flashes between two flashes of the same item. 

Each flash group flashes for 62 ms, followed by a 62 

ms inter-stimulus interval (ISI). Thus, a group flashes 

every 124 ms (i.e., 8 flashes/s). Twenty four flashes (from 

12 columns and 12 rows) make up one complete 

sequence. For each item selection, five complete 

sequences or five repetitions occur (i.e., any target item 

flashes 10 times). A 3500 ms break is added between 

items. 

Per one letter we obtain 110 non-target events and 10 

target events. Thus, from one six-word spelling session, a 

total of 3960 non-target events and 360 target events are 

obtained. 

 
 

Figure 2. P300 Visual Speller Display Layout 

 
 
 

Figure 3. Checkerboard paradigm: the items in 

white cells randomly fill a virtual 6 x 6 white matrix 

and the items in the black cells randomly fill a virtual 

6 x 6 black matrix 

 
Six training sessions were performed on the first day 

of the experiment, followed by 3, 2 and 2 online sessions 

on the second, third and fourth day respectively. The 

training sessions served to gather data and used to derive 

the classification models for the online runs. No feedback 

was shown in the training session. The seven online 

sessions were used to calculate the accuracy (average 

success rate). Feedback of each trial was shown to the 

participant in the online sessions by showing their 

classification result (the output letter) which takes an 

extra time of 1000 ms between each trial. Each session 

consists of six trials (i.e., six target letters). In each trial, 

the subject was instructed to focus on the target character 

and count the times the target character flashed to ensure 
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that concentration was maintained. Every target character 

of a trial was randomized for all training sessions and 

online sessions. The target characters’ background is 

highlighted for 3500 ms during the break between trials 

to indicate the target. Then the letters flashed according 

to the virtual checkerboard layout until all six trials 

finished. 
 

 
 

Figure 4. Example of first flash group of a flash 

sequence: the flashing characters are from the first 

row of the virtual white matrix 

 

4.4 Signal Processing 

The goal of the preprocessing stage is to increase the 

signal-to-noise ratio. 

Power-line noise is a noise created by the electrical 

network. In Thailand, it is composed of sharp peaks at 

50Hz. Some peaks may also be present at the harmonic 

frequencies, i.e.  the integer multiples of the power-line 

frequency. Thus, we used a notch filter to remove the 

frequency at 50 Hz as well as its harmonics, i.e., 100Hz, 

150Hz, etc. Since our signal is 125Hz (250Hz/2 

according to [29]), we shall run the harmonics until 125 

Hz. Next, we filtered the signals using a Butterworth 

bandpass filter with cut-off frequencies at 1 Hz and 20 

Hz to capture the relevant frequencies of P300. As the 

name P300 suggests, the ERP happens 300ms after the 

event has occurred. Therefore, to increase SNR, the EEG 

signals are epoched from 200 ms to 500 ms. 

Lastly, we explored three   different   preprocessing 

techniques adopted from the pyriemann library: 

xDAWN, ERP covariances and tangent space. xDAWN 

is a spatial filtering method designed to improve the 

signal to  signal+noise  ratio  (SSNR)  of the ERP 

responses. It enhances the target response with respect to 

the non-target response [22]. Number of components for 

xDAWN was set to 3. ERP covariances estimate a special 

form covariance matrix for ERP. It allows us to take into 

account the spatial structure of the signal [23]. We used 

oracle approximating shrunk covariance matrix in  both  

xDAWN and ERP as it is a regularized covariance matrix 

estimator. Tangent space bridges euclidean space and 

Riemannian manifolds. It projects covariance matrices 

belonging to the Riemann manifold into Euclidean space 

vectors.  By using this mapping,  one can use classical 

and efficient classifiers such as logistic regression on 

covariance matrices directly, instead of using MDM. 

 

4.5 Classification 

From previous steps, we achieved a total of 4320 

samples which consisted of 3960 non-target and 360 

target samples. Each sample consists of 8 sequences from 

each electrode and each sequence is of length 76. For each 

classification model we performed 15-fold cross 

validation with Stratified KFold (random state was set to 

42). 

P300 Speller is based on a binary classification 

problem where the ERP of the target and non-target 

stimuli must be identified. In order to find out which 

specific character the participant is looking at, we 

employ 3 different binary classification methods from 

sklearn namely LR, MDM, and RegLDA analysis. 

Logistic regression is a supervised learning clas- 

sification algorithm used to predict the probability of a 

target variable. In our case, the two classes are 

target/non-target. The configurations of this model were 

set to penalty=l1, solver=liblinear and multi class=auto. 

MDM classifier is a classification model that assigns to 

observations the label of the class of training samples 

whose mean (centroid) is closest to the observation. This 

classifier works by calculating covariance mean matrices 

for each class in training data as a representative and 

assigns the label to test data by calculating their distances 

from mean covariance matrices of classes. We used the 

sklearn’s default configurations for MDM. RegLDA 

estimates the probability that a new set of inputs belongs 

to every class and outputs the class with the highest 

probability. The configurations of this LDA were set to 

shrinkage=auto and solver=eigen. 

The models' performance were measured by sklearn’s 

classification report and the cross validation score were 

reported in terms of AUC ROC score. 

4. RESULTS 

We report the result of waveform analysis, models’ 

accuracy, and information transfer rate. 

 

4.1 Waveform Analysis 

To check the P300 occurrences, the average wave- 

forms at electrodes Fz,  F3,  C4,  Cz,  Pz,  P3,  O2  and 

O1 were analyzed. Fig. 5 presents plots of average EEG 

signals of non-target and target with topographies. The 

target condition shows a positive voltage component of 

P300 response at approximately 250-275 ms after the 

stimulus onset, while this was not present in the non-

target condition. Note that the P300 could normally occur 

anywhere between 250-400 ms post-stimulus onset [30]. 

As shown in  Fig.  6,  when  topographical  subplots 

of average target (orange) and non-target (blue) ERPs are 

plotted, P300 peaks of target ERPs can be seen clearly at 

occipital (O1, O2) and parietal (P3) regions but not as 

prominent on the midline electrodes (Cz, Fz).
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Figure 5. Average waveforms of each electrode of 

non-target (top) and target (bottom) from the first 

online session with topographies 

 

4.2 Performance Metrics 

Next, we trained four classification models with four 

different combinations of preprocessing techniques and 

classification algorithms on the EEG signals acquired 

from the training sessions. Performance of the models are 

reported in terms of precision, recall, f1-score, accuracy 

(See Table 1), area under the receiver operating 

characteristic curve (AUC ROC) (See Fig.7). 

ERP+TS+LR and xDAWN+RegLDA achieved similar 

performance and outperformed xDAWN+MDM and 

ERP+MDM for all metrics. This suggested that the MDM 

model is prone to produce more false negative than false 

positive predictions which was as expected as there are far 

more non-target samples than target samples in the training 

dataset.  The reason is likely due to MDM’s inability to 

model the non-stationary nature of EEG signals. Hence, 

LR and RegLDA can better model EEG signals given their 

statistical properties. 

 

Table 1: Precision, recall, f1-score and accuracy 

of each model 

Model Precision  Recall  f1-score Accuracy  

ERP+TS+LR 0.93 0.94 0.93 0.94 

ERP+MDM 0.92 0.80 0.84 0.80 

xDAWN+RegLDA 0.93 0.93 0.93 0.93 

xDAWN+MDM 0.92 0.82 0.82 0.82 

   
 

Figure 6. Topographical subplots of average target 

ERP (orange) and non-target ERP (blue) from the first 

online session 

 

4.3 Information Transfer Rate 

Since the performance of ERP+TS+LR and xDAWN 

+RegLDA were similar in precision, recall, f1-score as 

well as accuracy and due to the imbalance of our data, we 

selected the best model according to AUC ROC score 

which was xDAWN + RegLDA. Therefore we used this in 

our information transfer rate analysis. 

 
 

 

 
Figure 7.  AUC ROC of each model from a 15-fold 

cross validation on data of all 6 offline sessions. 

 

Blue is the result of ERP covariance and tangent space 

as signal processing and LR as classification model. 

Orange is the result of ERP covariance as signal 

processing and MDM as classification model, green is 

with xDAWN as signal processing and RegLDA as 

classification model and lastly, red is with xDAWN as 

signal processing and MDM as classification model.
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Information Transfer Rate (ITR) is the standard method 

for measuring the performance of BCI. It is the amount of 

information transferred per unit time (bits/min) calculated 

with the following formula [31], where B is information 

transferred in bits per trial, N is the number of target 

classes, and P is the rate of correctly classified commands 

to the total number of commands : 
 

𝐵 = 𝑙𝑜𝑔2𝑁 + 𝑃 ⋅ 𝑙𝑜𝑔2𝑃 + (1 − 𝑃) ⋅ 𝑙𝑜𝑔2(
1−𝑃

𝑁−1
)  (bit per trial)   (1)  

 

  To obtain the ITR in bits/min, B is multiplied by Q 

which is the average classification time in minutes where 

S is the number of trials per minute and T is the total time. 

𝑄 =
𝑆

𝑇
 (trial per min)  (2) 

 

                  𝐼𝑇𝑅 = 𝐵 ⋅ 𝑄 (bit per min)                       (3) 

 

In our experiment, N is 72 (from the 8 x 9 matrix). We 

conducted a total of seven online sessions with 6 trials 

each.   The model was able to classify 32 out of 42 trials 

correctly,  thus P is 0.7619.   According to the equations, 

B is 3.913 bit/trial and Q is 2.608 trials/min are obtained. 

Finally, an ITR of 10.205 bit/min is achieved. 

We also tested the speller on 2 other subjects. We 

conducted 6 training sessions on both subjects to get the 

training data. On the first participant, we conducted 2 

online sessions (one with 6 letters and one with 4 letters) 

and achieved an accuracy of 0.70 (7 correctly classified 

out of 10). For the second participant, 2 online sessions 

were conducted and an accuracy of 0.50 (6 correctly 

classified out of 12) was achieved. 

 
5. DISCUSSION 

Our results were consistent with past work, showing 

that P300 peaks at around 250-400 ms after the stimuli 

onset. Moreover, P300 is most prominent in the occipital 

region which is the region responsible for human vision. 

As we have found, the best performing model was 

xDAWN+RegLDA which achieved cross-validation 

accuracy of 93% in training sessions and 76% in online 

sessions. The difference of validation accuracy between 

training sessions and online sessions is likely due to 

random factors such as user’s concentration, different 

days of sessions, and slightly different cap positions that 

may not be fully captured in the training sessions. 

Indeed, during our research, we observe that con- 

centration of the participant, eye fatigue, and sleepiness 

greatly affect the performance of our P300 speller and thus 

leads to different performances across participants. 

Therefore, it is advised that participants should have a 

good sleep and meditate if possible. 

For classification models, a particular worst per- 

former has been consistent whenever MDM was used. 

One possible explanation is that mean distances may not 

be the best central tendency metric for estimating the 

distributions of P300 or of EEG in general. On the other 

hand, RegLDA and LR were able to effectively classify 

the P300 signal after certain preprocessing techniques. 

Since RegLDA and LR were two relatively simple 

classifiers, it may be safe to assume that once P300 signals 

were effectively preprocessed, any classifier algorithm 

should work relatively well, implying the importance of 

preprocessing algorithms. Although we have successfully 

implemented the first Thai language-based BCI speller, 

the speller only  achieved  an  ITR of  10.205  bit/min  or  

around 1.25 words/min.   For future work,  it may be wise 

to integrate steady state visually evoked potentials 

(SSVEP) to our current P300 system to make it a hybrid 

SSVEP-P300 BCI speller which will allow less training 

time and higher ITR. 

 
6. CONCLUSION 

This study contributes to the development of the first 

Thai language-based BCI speller that fully relies on only 

brain signals without any eye-tracking or other input 

modalities. We have compared four different models 

which combine different machine learning algorithms and 

preprocessing techniques. We found that ERP and 

xDAWN were effective preprocessing techniques while 

both LDA and LR classification models perform relatively 

well. This work provides a practical and theoretical 

foundation for the development of Thai language-based 

BCI speller. 
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