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ABSTRACT 

T-sum score is a well-known value representing the
deviation of metabolism in the brain due to 
neurodegenerative disease. The score can be obtained from 
voxel-based statistical analysis of 18F-FDG PET images. 
The objective of this study was to explore the enhanced 
potency of    t-sum score for classification of Alzheimer’s 
disease (AD) using support vector machine (SVM). 
18F-FDG PET studies from 100 AD patients and 100 age-
matched normal-elderly controls obtained retrospectively 
from the online ADNI database. Five pre-processing tasks 
including converting the file format, re-orientation, spatial 
normalisation, smoothing and intensity normalisation were 
applied on each PET image. Then, AD t-sum scores were 
calculated for each subject’s PET study through voxel-based 
analyses using statistical parametric mapping (SPM12) 
software. The SVM was then employed and the 
hyperparameters have been optimised through GridSearch 
technique for computer-aided detection of AD based on AD 
t-sum feature. The classification accuracy, sensitivity,
specificity and AUC based on 10-fold cross-validation were
86%, 84%, 88% and 0.916, respectively. This study showed
that employing SVM with optimised hyperparameters based
on AD t-sum feature extracted from brain 18F-FDG PET
images provides a good performance for classification of
AD.
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1. INTRODUCTION

Alzheimer’s disease (AD), the 6th cause of death 
worldwide, is a progressive and non-reversible 
neurodegenerative disorder characterised by impairment in 
memory and cognition, and followed by alteration in 
behavior and increasing needs for care [1, 2].  One in 10 
people (10%) in the age of 65 years or older has AD in the 
US in 2020 [3]. Based on an estimation from the World 
Health Organization (WHO), in 2019 around 30-35 million 
people across the world suffered from AD [4], and one out 
of 85 persons will have the AD by 2050 [5]. The typical 
pathophysiology of AD includes abnormal accumulation of 
Amyloid beta peptides between neurons forming amyloid 
plaques that block neural connection, and hyper-
phosphorylation of tau proteins inside neurons building up 
neurofibrillary tangles that cause loss of axonal transport [6, 
7]. These series of events result in some morphological, 
metabolic and biochemical changes in the brain happening 
even before the disease symptoms appear [8].  

The morphological changes due to AD including 
atrophy in the temporal lobe, volume reduction especially in 
hippocampus and brain ventricles enlargement, can be 
detected in structural MRI [6]. However, metabolic changes 
as a predictor of the disease can be detected in the early 
stages compared to structural alterations [9]. Positron 
emission tomography (PET) utilizing [18F]-
fluorodeoxyglucose (18F-FDG) represents the metabolic rate 
of glucose consumption in vivo. The typical pattern of AD 
in 18F-FDG PET images includes hypometabolism in 
precuneus, bilateral temporo-parietal and frontal cortex, and 
posterior cingulate area, while primary cortical regions, 
cerebellum, brainstem, basal ganglia and thalamus are 
preserved from AD [10, 11].  

Through visual assessment of the brain 18F-FDG PET 
images by radiologists, subtle metabolic changes in the early 
AD stages make it difficult to distinguish AD from normal-
aging. It causes inter-observer errors when visual 
assessment of PET data for detection of abnormalities [11]. 
Over recent years, in order to enhance the radiologists’ 
performance and for reducing inter-observer errors, several 
computer-aided diagnosis (CAD) procedures for detection 
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of those metabolic changes have been developed. As a 
result, radiologists benefit from the diagnosis made by 
computers as “second opinion” [12-14].  

Voxel-based analysis approaches for CAD of AD 
using 18F-FDG PET images have been the focus of attention 
of many studies in recent years. In voxel-as-feature (VAF) 
approach, each individual voxel is considered as a feature. 
Despite providing a good classification performance, the 
feature space would be very high dimensional, and causes a 
very high computational cost [13, 15, 16]. Projection-based 
approaches also use whole voxels in the image as features, 
and reduce the number of features using techniques like 
principal component analysis (PCA), but the feature space 
would be still high dimensional [17]. Atlas-based 
approaches map PET images into atlases parcellated into 
some predefined areas, and each feature would be the 
summation of voxel values in each region. Despite 
providing good results, this method needs co-registered 
MRI from patients to map PET images into atlases [18]. 

A voxel-based t-test analysis method for CAD of AD 
was proposed by Perani et al. [19], that calculated t-values 
for each individual voxel position between each subject’s 
18F-FDG PET image versus group of age-matched normal 
controls’ images of 18F-FDG PET. Next, an AD mask was 
created through voxel-based statistical analysis between 
images from group of AD patients versus group of age-
matched control. This mask represented areas that were 
affected by AD. Lastly, summation of t-values in areas 
affected by AD in this AD mask provided “t-sum score”. 
Haense et al. used this score for detection of AD from brain 
18F-FDG PET data. they set a pre-defined cut-off value on 
t-sum score. A subject with t-sum value above that cut-off 
value was considered as an AD patient and under that value 
was classified as normal subject. They reported a sensitivity 
of 83% and specificity of 78% using PET data obtained from 
ADNI database [11]. This research group also developed a 
software to detect AD based on this score [20]. A study by 
Lange and his co-investigators reported an AUC value of 
0.832 for detection of AD based on t-sum score [21].  

An important component of any CAD system is the 
classification algorithm that mainly works based on 
machine learning (ML) principles. Machine learning as a 
subset of Artificial Intelligence (AI) enables computer 
systems to be learned from a sampled data set and then, to 
make a prediction for unseen data [22]. Support vector 
machine (SVM) is one of the most efficient ML algorithms 
for the classification task, especially when a small training 
dataset is available [23]. A meta-analysis on utilization of 
ML algorithms in healthcare showed that SVM has been the 
most commonly used classification algorithms in 
healthcare, especially in the field of neuroimaging [24]. 
Several studies for computer-aided diagnosis of AD using 
brain 18F-FDG PET images have used SVM algorithm for 
the classification task [16, 18, 25-27]. Buchpiguel et al. 
reported an AUC value of ~ 0.8 for CAD of AD using brain 
18F-FDG PET data by employing SVM [28]. Hinrichs et al. 

obtained an accuracy of 84% for detection of AD using 
SVM [25]. SVM was firstly proposed by Cortes and Vapnik 
[23]. This algorithm attempts to find an optimum hyper-
plane for separating data points linearly. If datapoints are not 
linearly separable, SVM can map datapoints into a new 
higher dimensional space using various kernel functions like 
polynomial functions (poly-kernels) and gaussian function 
(radial-basis function (RBF) kernel) to make datapoint 
linearly separable [22, 23]. A study by Romero et al. 
compared the accuracies gained by linear, RBF, polynomial 
and quadratic SVM kernels for computer-aided diagnosis of 
AD using brain SPECT images, and showed that RBF kernel 
yielded the highest classification performance [29]. 
According to Jongkreangkrai et al. recommendation, the 
RBF kernel is better to start with while using SVM models 
[30]. To find the optimised hyperparameters of SVM 
models, a GridSearch method systematically combines 
different values of hyperparameters and seeks for the best 
combination based on the least classification error [31]. 

Since AD t-sum score is considered as an indicator 
for detection of AD from brain 18F-FDG PET images, the 
current study aimed at enhancing the potency of this score 
for computer-aided diagnosis of AD. To do that, some 
pre-processing tasks in the process of obtaining AD t-sum 
score were modified. Then, an SVM with RBF kernel was 
employed and its hyperparameters were optimised using 
GridSearch technique. In addition, the area under the ROC 
curve (AUC) value based on 10-fold cross-validation was 
used to evaluate the classification performance of the model. 

2. MATERIALS AND METHODS 

2.1. Data Collection 

Brain 18F-FDG PET data used in this study were 
collected retrospectively from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database 
(http://adni.loni.usc.edu). The ADNI was launched in 2003 
as a public-private partnership led by Principal Investigator 
Michael W. Weiner, MD. The primary goal of ADNI is to 
test whether serial MRI, PET, other biological markers, 
clinical and neuropsychological assessment can be 
combined to measure the progression of MCI and early AD.  

A total of 200 studies of the brain 18F-FDG PET were 
included in this work: 100 from patients with AD (50 men 
and 50 women; 74 ± 5 years of age; mean age, 73.7; SD: 
2.6) and 100 from age-matched normal-elderly subjects (51 
men and 49 women; 74 ± 5 years of age; mean age: 74.0; 
SD: 2.7). The ADNI protocol for 18F-FDG PET data 
acquisition was: injection of 18F-FDG with activity of 185 
MBq (5.0 mCi) ± 10, 30 minutes (six 5-minutes frames) 
dynamic acquisition starting from 30 to 60 minutes post-
injection.  

http://adni.loni.usc.edu/
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2.2. Pre-processing 

The aim of pre-processing tasks was to make PET 
images obtained from different systems similar before 
preforming feature extraction. This step has a crucial role in 
voxel-based statistical analysis which is the basis of current 
work for extraction of t-sum feature from each image. All 
five pre-processing tasks including converting the file 
format, re-orientation, spatial normalisation, smoothing, and 
intensity normalisation were performed using Statistical 
Parametric Mapping (SPM12) software running in 
MATLAB version R2018a. 

Firstly, PET images in DICOM format were 
converted into NIfTI, which is a single 3-dimensional 
neuroimaging file format. Next, through re-orientation task, 
images were aligned with the brain PET standard space 
defined by SPM12. Then, spatial normalisation was applied 
to PET images. This step ensued that each voxel would refer 
to the same anatomical region in the brain in all subjects’ 
PET images. A dementia-specific 18F-FDG PET template 
provided by Caroli et al. [32] was used to register with each 
subject’s PET image. Moreover, smoothing task with the 
aim of increasing the signal-to-noise ratio and making 
images more uniform, was applied to images using an 
isotropic 3-dimensional Gaussian filter with 12 mm full 
width at half maximum (FWHM). 

Since the collected data were with different range of 
voxels intensities, intensity normalisation was applied as the 
last pre-processing task. This process was performed 
according to the method proposed by Fellgiebel et al. [33]. 
To perform intensity normalisation, a statistical parametric 
mapping (SPM) process was performed. Statistical 
parametric mapping refers to an automated voxel-wise 
statistical comparison of metabolic and functional 
neuroimages to a group of control. This process is mainly 
used for identification of those areas in the brain which 
experience a particular effect such as hypometabolism, 
hypermetabolism or activation caused by disorders [34, 35]. 
SPM12 is a software that especially designed to automate 
this voxel-by-voxel statistical process, and can be used to 
find those voxel positions either affected or preserved from 
a specific disease in the brain. In this study, this statistical 
parametric mapping technique was used for both intensity 
normalisation and t-sum score extraction tasks from PET 
data. To normalise the voxel intensities of PET images in 
the current work, a voxel-by-voxel two-sample t-test 
between group of PET image from patients with AD versus 
group of PET images from normal-elderly controls was 
performed. SPM12 t-contrast was set to find those voxel 
positions which their mean values in group of AD were 
higher than in the group of control, with 95% confidence 
interval (CI) (i.e., SPM12 was commanded to find those 
statistically significant voxel positions preserved from AD). 
Fig. 1 represents those voxel positions overlaid on structural 
MRI images. Using MarsBar software 
(http://marsbar.sourceforge.net/), those voxels were 

extracted to form a binary NIfTI image of the preserved area 
from AD (i.e., voxel positions preserved from AD with 
value of 1, and those not preserved from AD with value of 
0). Then, each subject’s PET image was multiplied with this 
binary image; so, only voxel values remained non-zero 
which were corresponded to positions preserved from AD. 
The reference value for normalisation then obtained by 
averaging the voxel values from the non-zero voxels. The 
final step for intensity normalisation for each subject’s PET 
image was dividing each voxel value by this reference value 
using MATLAB software. 

 

 
Figure1. Voxel positions preserved from Alzheimer’s 
disease with 95% CI, obtained from voxel-by-voxel 
statistical analyses, overlaid on structural MRI images. 

2.3. AD T-sum Feature Extraction 

After all of five pre-processing tasks were 
accomplished, the whole PET data became similar in term 
of format, orientation, number of slices, stereotactic voxel 
position, resolution and range of voxel intensities. In order 
to extract t-sum feature from each PET study, a three-phased 
voxel-based statistical process using SPM12 software was 
performed.  

In the first phase, a binary mask of AD was created. 
To do this, voxel-by-voxel two-sample t-test between group 
of PET image from patients with AD versus group of PET 
images from normal-elderly controls was performed in 
order to find voxel positions which their mean values in 
group of AD were less than in the group of control, with 
95% CI (i.e., statistically significant voxel positions affected 
by AD). Fig. 2 represents those voxel positions overlaid on 
structural MRI images. Using MarsBar software, those 
voxels were extracted to form a binary NIfTI image of the 
affected area from AD (i.e., voxel positions affected from 
AD with value of 1, and those not affected by AD with value 
of 0). 

 

http://marsbar.sourceforge.net/
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Figure 2. Voxel positions affected from Alzheimer’s 
disease with 95% CI, obtained from voxel-by-voxel 
statistical analyses, overlaid on structural MRI images. 
 

In the second phase, voxel-by-voxel two-sample 
t-test between each single subject’s PET image versus group 
of PET images from normal-elderly controls was performed. 
T-values were then calculated for each voxel position using 
SPM12, and a 3-dimensional SPM t-map was provided for 
each individual subject’s PET image. This SPM t-map 
represented how much each subject’s PET image differs 
from group of controls’ PET images. However, in this work 
we only dealt with the differences caused by AD. Hence in 
the third phase, each subject’s SPM t-map was multiplied 
with the binary mask of AD obtained in the first phase. As a 
result of this multiplication, only t-values remained non-
zero which were corresponded to voxel positions affected 
from AD. Summation of remaining t-values yielded AD 
t-sum score, which was the only feature extracted from 
18F-FDG PET images in this study. 
 

2.4. Classification Process 

The sequential minimal optimization (SMO) 
algorithm which is an efficient and fast algorithm for 
training the SVM with RBF kernel was implemented in 
WEKA data mining suite. WEKA freeware provides ML 
algorithms in a graphical user interface. A study by 
Tantiwetchayanon et al. showed that there was no 
statistically significant difference between the SVM with 
RBF kernel classification performance implemented in 
WEKA and SVM-light softwares for computer-aided 
diagnosis of AD from MRI data [36]. In the current study, 
WEKA facilitated the cross-validation technique as well as 
supplying GridSearch option for SVM parameter 
optimisation. 

Classification was performed based on AD t-sum 
feature extracted from each subject’s PET study. Two 
hyperparameters of RBF kernel, C = [0-6, 10-5, 10-4, ..., 104, 
105, 106] and Gamma = [10-6, 10-5, 10-4, ..., 104, 105, 106] 
were optimised using GridSearch technique. The 
BuildCalibrationModels option was used for calibrating the 
fully trained model. Ten-fold cross-validation method was 
adopted for estimation of classification performance. It 
means that studies were partitioned into 10 folds (10 small 

sets) with equal size where each fold contained 20 PET 
studies.  In the SVM, nine folds were used for training the 
SVM model and the remaining one fold was used for testing 
to compute the classification performance. This process was 
repeated in a loop for 10 times. For the evaluation of the 
classification performance, sensitivity, specificity and 
accuracy were computed. Receiver operating characteristic 
(ROC) analysis was performed using MedCalc statistical 
software (https://www.medcalc.org/). Then, the area under 
the ROC curve (AUC) was calculated using the same 
software. 

 

3. RESULTS 

Since the greatest risk factor for developing AD is 
increasing in age [37], to rule out the effect of age from 
voxel-based analyses, an independent t-test was conducted 
to compare the age difference between patients with AD and 
normal-elderly controls. The result showed that there was no 
significant difference between two groups (p-value = 0.37). 

AD t-sum score from each subject’s brain 18F-FDG 
PET image was extracted through statistical parametric 
mapping. The scatter plot of t-sum features extracted from 
PET images of AD patients and age-matched controls are 
illustrated in Fig. 3. It shows scattering of AD t-sum features 
indicating that using any predefined cut-off value may cause 
misclassifications. In such situations, machine learning 
algorithms can find a pattern for the best classification of 
data points. 
 
 
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Scatter plot of AD t-sum features extracted from 
18F-FDG PET images from 100 patients with AD and 100 
normal-elderly controls. 
 
 

For classification of PET images based on AD t-sum 
scores in this work, SMO algorithm was employed for 
training the SVM model, implemented in WEKA data 
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mining suit. In order to evaluate the enhancement of 
classification performance of SVM after its 
hyperparameters optimization through GridSearch 
technique, ROC for SVM with RBF kernel with the default 
hyperparameters (C = 1 and Gamma = 10-2) defined by 
WEKA was compared to the SVM with the optimised 
hyperparameters (C = 106 and Gamma = 10-3). The obtained 
AUC values were 0.855 and 0.916, respectively (P < .001) 
(Fig. 4). The sensitivity, specificity, and accuracy after 
optimization of SVM (with RBF kernel algorithm) 
hyperparameters were 84%, 88%, and 86%, respectively. 

 

 
 
Figure 4. ROC curves and AUC values for evaluation of 
classification performance of SVMs with optimised and 
default hyperparameters implemented in WEKA 
datamining suite. 

 
 

4. DISCUSSION  

Voxel-based statistical analysis approach was the 
basis of the current study to extract the single value of AD 
t-sum score from each 18F-FDG PET image. Classification 
of AD then performed using SVM machine learning 
algorithm based on AD t-sum score as the only feature 
element. Utilization of this single feature for building the 
ML model for classification provided the least 
computational cost comparing with many studies using 
voxel-based analysis of PET images for classification of 
AD. Hinrichs et al. considered each individual voxel of the 
brain PET images as a feature. As each PET study contains 
~ 5 ×105 voxels, the high dimensional feature space resulted 
in a high computation cost for training of the machine 

learning algorithm [25]. Andersen et al. reduced the feature 
space dimensionality by selection of only discriminant 
voxels between PET data from patients with AD and healthy 
subjects [16], However, feature space still remained high 
dimensions.  

T-sum score has been an effective indicator for the 
deviation of glucose consumption in the brain due to 
neurodegenerative disorders that can be extracted from 
brain 18F-FDG PET images. This study tried to modify 
spatial normalisation, intensity normalisation and 
smoothing tasks to enhance the potency of this score for 
detection of Alzheimer’s disease. Moreover, instead of 
using a cut-off value on t-sum score for the classification of 
PET data, an SVM algorithm was employed and its 
hyperparameters were optimised to boost the capabilities of 
t-sum score for computer-aided diagnosis of AD. The 
proposed method in this study can be useful in clinical 
researches for the detection of AD from brain 18F FDG PET 
images. 

AD t-sum score firstly proposed by Perani et al [19]. 
This value represented the deviation of glucose 
consumption caused by Alzheimer’s disease. They 
performed classification task based on a threshold for t-sum 
score, obtained sensitivity of 78% and specificity of 83% for 
classification of AD. Another study by Lange and his 
co-investigators reported an AUC value of 0.832 for 
detection of AD based on t-sum score [21]. Fujiwara and his 
coinvestigators reported a sensitivity of 73% and specificity 
of 88% using AD t-sum score for estimation of MCI to AD 
conversion [38].  In current study, we combined voxel-based 
statistical analysis to obtain AD t-sum score as feature, and 
SVM was used for classification of AD. Sensitivity of 84%, 
specificity of 88%, accuracy of 88% and AUC value of 
0.916 were obtained for classification of AD.  

Intensity normalisation of 18F-FDG PET images prior 
to voxel-based statistical analysis has an important impact 
on t-sum feature extraction [21]. Global mean normalisation 
as the most widely used method in PET analyses, uses the 
mean value of whole voxels of the brain for intensity 
normalization. However, this method may provide a bias 
due to the lower mean value in PET images from patients 
with AD [39]. Fellgiebel et al. proposed a voxel-based PET 
group comparison to obtain only voxel positions that were 
significantly preserved from AD. Then intensity 
normalisation was performed based on mean value of the 
preserved voxels from AD [33]. Gjedde et al. suggested 
intensity normalisation based on voxels preserved from AD 
to enhance the voxel-based analysis for detection of AD 
[39]. Similarly, intensity normalisation in this work was 
performed based on those preserved voxels from AD. These 
preserved areas from AD were agreed with the study of 
Fellgiebel et al. [33]. Moreover, the binary mask of AD that 
represents voxel positions which are significantly affected 
by AD (with 95% CI), has an important impact on extraction 
of AD t-sum feature. In this study, the results indicated that 
these areas were agreed with the results of Lange et al. [21]. 
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The extracted AD t-sum scores from each PET study 
in this work (Fig. 3), showed variability and scattering of 
t-sum scores. Thus, it is difficult to determine an appropriate 
cut-off value for classification of AD. In such situation, 
machine learning algorithms find a pattern for best 
classification of datapoints [23]. This was the rationale 
behind utilization of SVM for classification of AD.  

In this study, a single value of AD t-sum score was 
extracted from each subject’s PET image for detection of 
AD. Further studies can be conducted to split down brain 
PET images into several regions, in order to extract regional 
AD t-sum scores from each region in the brain. Then, 
classification of PET data can be performed using ML 
algorithms based on regional AD t-sum scores. 

There were some limitations in this study. Firstly, this 
study involved with a binary classification of 18F-FDG PET 
images into AD or normal-elderly subjects while MCI was 
not included in this work. Future studies can be conducted 
for multi-class classification of AD, MCI and normal aging. 
Secondly, classification task was performed using only one 
type of ML algorithm which was SVM (SMO with RBF 
kernel) since SVM is commonly used ML algorithm in 
healthcare [24]. Other types of ML classifiers such as neural 
network or decision tree can be employed to compare the 
performance of SVM algorithm for classification of AD. 
Lastly, only one feature which was AD t-sum score was an 
input into the ML algorithm. Inclusion of more features 
from MRI, the Mini-Mental State Examination (MMSE) 
score and CSF examination results may enhance the 
performance for classification of AD in a future study. 
 

5. CONCLUSION 

AD t-sum score extracted from brain 18F-FDG PET 
image through voxel-based statistical approach is a potential 
biomarker for detection of AD. In the preprocessing step of 
this work, re-orientation, spatial normalisation, smoothing 
and intensity normalisation were applied to obtain more 
accurate values of AD t-sum score. In the classification task, 
SVM machine learning algorithm was employed and its 
hyperparameters were optimised. The results of this work 
indicated high classification performance with accuracy, 
sensitivity, specificity and AUC values of 86%, 84%, 88% 
and 0.916, respectively.  
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